NATIONAL MATHEMATICS DAY

DR. KALIPADA MAITY

ASSISTANT PROFESSOR OF MATHMATICS

 MUGBERIA GANGADHAR MAHAVIDYALAYA

History Of S.RAMANUJAN-

$>$ Born on December 22, 1887.
$>$ In a village in Madras State, at Erode, in Tanjore District.
$>$ In a poor HINDU BRAHMIN family.
> Full name is "SRINIVAS RAMANUJAN AYYANGER".
$>$ Son of Srinivas Iyenger.
$>$ Accountant to a cloth merchant at KUMBHAKONAM. Daughter of petty official (Amin) in District Munsif's court at Erode.
$>$ Daughter of petty official (Amin) in District Munsif's court at Erode.
$>$ First went to school at the age of 7.
$>$ His famous history was :- One day a primary School teacher of $3^{\text {rd }}$ form was telling to his students 'If three fruits are divided among three persons, each would get one, even would get one , even if 1000 fruits are divided among 1000 persons each would get one '. Thus, generalized that any number divided by itself was unity. This Made a child of that class jump and ask- ' is zero divided by zero also unity?' If no fruits are divided nobody, will each get one? This little boy was none other than RAMANUJAN .
$>$ So intelligent that as students of class $3^{\text {rd }}$ or primary school.
$>$ Solved all problems of Looney's Trigonometry meant for degree classes.
$>$ At the age of seven, he was transferred to Town High School at Kumbhakonam.
$>$ He held scholarship.
$>$ Stood first in class.
$>$ Popular in mathematics.
$>$ At the age of 12 , he was declared "CHILD MATHEMATICIAN" by his teachers.
$>$ Entertain his friends with theorem and formulas.
$>$ Recitation of complete list of Sanskrit roots and repeating value of Π and square root of 2 , to any number of decimal places.
$>$ In 1903 , at the age of 15 , in VI form he got a book, "Carr's Synopsis".
$>$ "Pure and Applied Mathematics"
$>$ Gained first class in matriculation in December 1903.
$>$ Secured Subramanian's scholarship.
$>$ Joined first examination in Arts (F.A).
$>$ Tried thrice for F.A.
$>$ In 1909, he got married to Janaki ammal.
$>$ Got job as clerk.
$>$ Office of Madras port trust.

Born	4 November 1897 Tellicherry,Kerala
Died	February 1984 (aged 87)
Nationality	Indian
Fields	Botany, Cytology
Institutions	University
Botany, Laboratory Madras	
Alma mater	University of Michigan

$>$ Published his work in "Journal of Indian Mathematical Society".
$>$ In 1911, at 23 , wrote a long article on some properties of "Bernoullis Numbers".
$>$ Correspondence with Prof.J.H Hardy.
$>$ Attached 120 theorems to the first letter.

GLORY AND TRAGEDY

> He found a Clerical job in Madras port to help his family from poverty. (All other free time were spent for maths)
> Ramanujan wrote many letters to mathematician around the world including one to G.H. Hardy.
> Hardy invited Ramanujan to Cambridge. During his visit, Ramanujan wrote 30 papers (some on his own, some joint with Hardy)
> Ramanujan had to overcome many difficulties like world war I, Inability to eat English food.
> Despite these hardships, for his field-changing work he was elected "Fellow of the Royal Society"
> Due to Malnutrition, he felt ill, and he returned to home, where he died one year later in 1920 at the Young age of 32 .

Ramanujan's Magic Square

22	12	18	87
88	17	9	25
10	24	89	16
19	86	23	11

This square looks like any other normal magic square. But this is
formed by great mathematician of our country - Srinivasa
Ramanujan.

What is so great in it?

Ramanujan's Magic Square

22	12	18	87
88	17	9	25
10	24	89	16
19	86	23	11

22	12	18	87
88	17	9	25
10	24	89	16
19	86	23	11

*Sum of numbers of any row is 139.
*Sum of numbers of any Column is 139.

RAMANUJAN'S MAGIC SQUARE

22	12	18	87
88	17	9	25
10	24	89	16
19	86	23	11

22	12	18	87
88	17	9	25
10	24	89	16
19	86	23	11

Sum of numbers of any diagonal is also 139. Sum of corner numbers is also 139.

22	12	18	87
88	17	9	25
10	24	89	16
19	86	23	11

Look at these possibilities. Sum of identical coloured boxes is also 139.

Interesting..?

22	12	18	87
88	17	9	25
10	24	89	16
19	86	23	11

22	12	18	87
88	17	9	25
10	24	89	16
19	86	23	11

RAMANUJAN'S MAGIC SQUARE

RAMANUJAN'S MAGIC SQUARE

22	12	18	87
88	17	9	25
10	24	89	16
19	86	23	11

22	12	18	87
88	17	9	25
10	24	89	16
19	86	23	11

$>$ Can you find Ramanujan Birthday from the square?
$>$ Yes. It is 22.12.1887

How it Works ?

A	B	C	D
D	C	B	A
B	A	D	C
C	D	A	B

A	B	C	D
$D+1$	$C-1$	$B-3$	$A+3$
$B-2$	$A+2$	$D+2$	$C-2$
$C+1$	$D-1$	$A+1$	$B-1$

Example:

25	08	19	96
87	18	05	28
06	27	88	17
20	85	26	07

* SSR's Birthday

Magic Square
Its 25, 08, 1986

Ramanujan's Radical Brain Teaser(1911)

- What is the value of x in the following equation?

Any Guess !
$x+1=\sqrt{1+x \sqrt{1+(x+1) \sqrt{1+\ldots}}}$

Remarkably the answer is exactly 3. Behold!

$$
\begin{aligned}
3 & =\sqrt{9} \\
& =\sqrt{1+8} \\
& =\sqrt{1+2 \cdot 4} \\
& =\sqrt{1+2 \sqrt{16}} \\
& =\sqrt{1+2 \sqrt{1+15}} \\
& =\sqrt{1+2 \sqrt{1+3 \cdot 5}} \\
& =\sqrt{1+2 \sqrt{1+3 \sqrt{25}}} \\
& =\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \cdot 6}}} \\
& =\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+\ldots}}}}
\end{aligned}
$$

Ramanujan's works with Infinity

- Ramanujan Summation Problem
- $1+2+3+4+\ldots=$? Is it Infinity!
- The Hardy-Ramanujan Asymptotic Partition Formula

We can partition 2 into 2 different ways !
$2,1+1 \quad \mathrm{P}(2)=2$
We can partition 3 into 3 different ways !
$3,2+1,1+1+1 \quad \mathrm{P}(3)=3$
We can partition 4 into 5 different ways !
$4,3+1,2+2,2+1+1,1+1+1+1$

$\checkmark \quad \mathrm{P}(8)=22$
$\checkmark \quad \mathrm{P}(32)=213$
$\checkmark \quad \mathrm{P}(96)=8349$
$\checkmark \quad P(64)=1741630$
$\checkmark \quad \mathrm{P}(128)=4351078600$
$\checkmark \quad \mathrm{P}(256)=365749566870782$
$\checkmark \quad$ He developed a formula for partition of any number $p(n)$ (A long time unsolved problem!)

Taxicab Number

1729
is a sum of two cubes in two different ways

$$
\begin{aligned}
& \text { Sf } \\
& \text { (i) } \frac{1+53 x+9 x^{2}}{1-82 x-82 x^{2}+x^{3}}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+ \\
& \text { on } \frac{\alpha_{0}}{x^{2}}+\frac{\alpha_{1}}{x^{2}}+\frac{\alpha_{2}}{x_{3}}+\cdots \cdot \\
& \text { (ii) } \frac{2-26 x-12 x^{2}}{1-82 x-82 x^{2}+x^{3}}=C_{0}+C_{1} x+L_{2} x^{2}+L_{2} x+\cdots \\
& \text { or } \frac{\beta_{0}}{x^{2}}+\frac{B_{1}}{x^{L}}+\frac{\beta_{L}}{x^{3}}+\cdots \cdot \\
& \text { (8i.) } \frac{2+8 x-10 x^{2}}{1-82 x-82 x^{2}+x^{3}}=c_{0}+c_{1} x+c_{2} x^{2}+c_{2} x^{3}+ \\
& \text { or } \frac{x_{0}}{x^{2}}+\frac{x_{1}}{x^{2}}+\frac{x_{2}}{x_{1}}+\cdots \\
& \text { 1te. } \\
& \left.\begin{array}{l}
a_{n}^{3}+a_{n}^{3}=c_{n}^{3}+(-1)^{n} \\
\alpha_{n}^{3}+\beta_{n}^{3}=\gamma^{3}+(-1)^{n}
\end{array}\right\} \\
& \text { Encmpleo } \\
& 135^{3}+138^{3}=172^{3}-1 \\
& 11161^{3}+11468^{3}=14258^{3}+1 \\
& 9^{3}+10^{3}=12^{3}+1 \\
& 791^{3}+812^{3}=1010^{3}-1
\end{aligned}
$$

Ramanujan's work

Ramanulan note books

Ramanujan's note book with his own hand writing

The reprint of Ramanujan's note book

THE MAN WHO KNEW INFINITY

A LIFE OF
THE GENIUS

RAMANUJAN

RObERT KANIGEL

Advantages of mathematicians learning history of math

- better communication with non-mathematicians
- enables them to see themselves as part of the general cultural and social processes and not to feel "out of the world"
- additional understanding of problems pupils and students have in comprehending some mathematical notions and facts
- if mathematicians have fun with their discipline it will be felt by others; history of math provides lots of fun examples and interesting facts

History of math for school teachers

- plenty of interesting and fun examples to enliven the classroom math presentation
- use of historic versions of problems can make them more appealing and understandable
- additional insights in already known topics
- no-nonsense examples - historical are perfect because they are real!
- serious themes presented from the historical perspective are usually more appealing and often easier to explain
- connections to other scientific disciplines
- better understanding of problems pupils have and thus better response to errors
- making problems more interesting
- visually stimulating
- proofs without words
- giving some side-comments can enliven the class even when (or exactly because) it's not requested to learn... e.g. when a math symbol was introduced
- making pupils understand that mathematics is not a closed subject and not a finished set of knowledge, it is cummulative (everything that was once proven is still valid)
- creativity - ideas for leading pupils to ask questions (e.g. we know how to double a sqare, but can we double a cube -> Greeks)
- showing there are things that cannot be done
- history of mathematics can improve the understanding of learning difficulties; e.g. the use of negative numbers and the rules for doing arithmetic with negative numbers were far from easy in their introducing (first appearance in India, but Arabs don't use them; even A. De Morgan in the $19^{\text {th }}$ century considers them inconceavable; though begginings of their use in Europe date from rennaisance Cardano - full use starts as late as the $19^{\text {th }}$ century)
- math is not dry and mathematicians are human beeings with emotions \rightarrow anecdotes, quotes and biographies
- improving teaching \rightarrow following the natural process of creation (the basic idea, then the proof)

Example 1: Completing a square / solving a quadratic equation

al-Khwarizmi (ca. 780-850)

$$
\begin{aligned}
& x^{2}+10 x=39 \\
& x^{2}+10 x+4 \cdot 25 / 4=39+25 \\
& (x+5)^{2}=64
\end{aligned}
$$

$$
x+5=8
$$

$x+5=8$

$$
x=3
$$

al-Khwarizmi completes the square

(1)

(2)

(3)

Example : Proofs without words

\rightarrow Pythagorean number theory

$$
2(1+2+\ldots+n)=n(n+1) \quad 1+3+5+\ldots+(2 n-1)=n^{2}
$$

$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet & \bullet & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & \bullet & \bullet & \bullet & \bullet \\ 0 & 0 & 0 & 0 & 0 & \bullet & \bullet & \bullet & \bullet & \bullet \\ 0 & 0 & 0 & 0 & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ 0 & 0 & 0 & \bullet \\ 0 & 0 & \bullet \\ 0 & \bullet & \bullet\end{array}$

0	\bullet								
\bullet	\bullet	0	\bullet	0	\bullet	0	\bullet	0	\bullet
0	0	0	\bullet	0	\bullet	0	\bullet	0	\bullet
\bullet	\bullet	\bullet	\bullet	0	\bullet	0	\bullet	0	\bullet
0	0	0	0	0	\bullet	0	\bullet	0	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	0	\bullet	0	\bullet
0	0	0	0	0	0	0	\bullet	0	\bullet
\bullet	0	\bullet							
0	0	0	0	0	0	0	0	0	\bullet
\bullet									

Golden Ratio

- Golden Ratio\Golden Ratio.pptx

Quotes from great mathematicians

\rightarrow ideas for discussions or simply for enlivening the class
"Albert Einstein (1879-1955)
Imagination is more important than knowledge.
"René Descartes (1596-1650)
Each problem that I solved became a rule which served afterwards to solve other problems.
"Georg Cantor (1845-1918)
In mathematics the art of proposing a question must be held of higher value than solving it.
*Augustus De Morgan (1806-1871)
The imaginary expression $V(-a)$ and the negative expression
$-b$, have this resemblance, that either of them occurring as the solution of a problem indicates some inconsistency or absurdity. As far as real meaning is concerned, both are imaginary, since $0-a$ is as inconceivable as $\sqrt{ }(-a)$.

(c) Can Stock Photo - csp7526027

